Efficiency of high- and low-voltage pulse combinations for gene electrotransfer in muscle, liver, tumor, and skin.

نویسندگان

  • F M André
  • J Gehl
  • G Sersa
  • V Préat
  • P Hojman
  • J Eriksen
  • M Golzio
  • M Cemazar
  • N Pavselj
  • M-P Rols
  • D Miklavcic
  • E Neumann
  • J Teissié
  • L M Mir
چکیده

Gene electrotransfer is gaining momentum as an efficient methodology for nonviral gene transfer. In skeletal muscle, data suggest that electric pulses play two roles: structurally permeabilizing the muscle fibers and electrophoretically supporting the migration of DNA toward or across the permeabilized membrane. To investigate this further, combinations of permeabilizing short high-voltage pulses (HV; hundreds of V/cm) and mainly electrophoretic long low-voltage pulses (LV; tens of V/cm) were investigated in muscle, liver, tumor, and skin in rodent models. The following observations were made: (1) Striking differences between the various tissues were found, likely related to cell size and tissue organization; (2) gene expression is increased, if there was a time interval between the HV pulse and the LV pulse; (3) the HV pulse was required for high electrotransfer to muscle, tumor, and skin, but not to liver; and (4) efficient gene electrotransfer was achieved with HV field strengths below the detectability thresholds for permeabilization; and (5) the lag time interval between the HV and LV pulses decreased sensitivity to the HV pulses, enabling a wider HV amplitude range. In conclusion, HV plus LV pulses represent an efficient and safe option for future clinical trials and we suggest recommendations for gene transfer to various types of tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer.

Efficient DNA electrotransfer can be achieved with combinations of short high-voltage (HV) and long low voltage (LV) pulses that cover two effects of the pulses, namely, target cell electropermeabilization and DNA electrophoresis within the tissue. Because HV and LV can be delivered with a lag up to 3000 sec between them, we considered that it was possible to analyze separately the respective i...

متن کامل

Mechanisms involved in gene electrotransfer using high- and low-voltage pulses--an in vitro study.

Gene electrotransfer is an established method for gene delivery which uses high-voltage pulses to increase permeability of cell membrane and thus enables transfer of genes. Currently, majority of research is focused on improving in vivo transfection efficiency, while mechanisms involved in gene electrotransfer are not completely understood. In this paper we analyze the mechanisms of gene electr...

متن کامل

Physiological effects of high- and low-voltage pulse combinations for gene electrotransfer in muscle.

Gene transfer by electroporation is gaining momentum now that high-level, long-term expression of transgenes is being obtained. Several different pulse regimens are efficient, yet little information is available about the physiological muscular response to gene electrotransfer. This paper provides a comprehensive evaluation of the physiological and molecular effects on host tissue after DNA ele...

متن کامل

Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilization and DNA electrophoresis.

Efficient cell electrotransfection can be achieved using combinations of high-voltage (HV; 800 V/cm, 100 micros) and low-voltage (LV; 80 V/cm, 100 ms) pulses. We have developed equipment allowing the generation of various HV and LV combinations with precise control of the lag between the HV and LV pulses. We injected luciferase-encoding DNA in skeletal muscle, before or after pulse delivery, an...

متن کامل

New Insights into the Mechanisms of Gene Electrotransfer – Experimental and Theoretical Analysis

Gene electrotransfer is a promising non-viral method of gene delivery. In our in vitro study we addressed open questions about this multistep process: how electropermeabilization is related to electrotransfer efficiency; the role of DNA electrophoresis for contact and transfer across the membrane; visualization and theoretical analysis of DNA-membrane interaction and its relation to final trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human gene therapy

دوره 19 11  شماره 

صفحات  -

تاریخ انتشار 2008